Error bounds of block sparse signal recovery based on q-ratio block constrained minimal singular values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse recovery based on q-ratio constrained minimal singular values

We study verifiable sufficient conditions and computable performance bounds for sparse recovery algorithms such as the Basis Pursuit, the Dantzig selector and the Lasso estimator, in terms of a newly defined family of quality measures for the measurement matrices. With high probability, the developed measures for subgaussian random matrices are bounded away from zero as long as the number of me...

متن کامل

ISAR Imaging Based on L1 L0 Norms Homotopy 2D Block Sparse Signal Recovery Algorithm

Many traditional sparse signal recovery based ISAR imaging methods did not utilize the block scatterers information of targets. Some block Bayesian learning based ISAR imaging algorithms are computational expensive. In this paper, a 2D block 1 0 norms homotopy sparse signal recovery algorithm (the BL1L0 algorithm) is proposed and utilized to form the ISAR image. Compared with Bayesian-based alg...

متن کامل

A Bounds for block sparse tensors

A Bounds for block sparse tensors One of the main bounds to control is the spectral norm of the sparse perturbation tensor S. The success of the power iterations and the improvement in accuracy of recovery over iterative steps of RTD requires this bound.

متن کامل

On recovery of block-sparse signals via mixed l2/lq (0 < q ¿ 1) norm minimization

Compressed sensing (CS) states that a sparse signal can exactly be recovered from very few linear measurements. While in many applications, real-world signals also exhibit additional structures aside from standard sparsity. The typical example is the so-called block-sparse signals whose non-zero coefficients occur in a few blocks. In this article, we investigate the mixed l2/lq(0 < q ≤ 1) norm ...

متن کامل

Person re-identification with block sparse recovery

We consider the problem of automatically re-identifying a person of interest seen in a “probe” camera view among several candidate people in a “gallery” camera view. This problem, called person re-identification, is of fundamental importance in several video analytics applications. While extracting knowledge from high-dimensional visual representations based on the notions of sparsity and regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2019

ISSN: 1687-6180

DOI: 10.1186/s13634-019-0653-1